We are now all knee-deep in the coronavirus pandemic. Because of this, summer 2020 has brought big changes for mathematics teacher educators in Texas. On the conference front, the annual Conference for the Advancement of Mathematics Teaching, at which we host our annual AMTE-TX business meeting and AMTE-TX strand of presentations, was converted to an online format and moved to the last half of 2020. Our board made the difficult decision to cancel our own 2020 fall conference.

Mathematics teachers of all varieties are in the midst of figuring out how to do their jobs for the 2020-21 school year, with some schools opening in virtual-only settings, and all schools dealing with great what-ifs.

Summer 2020 also had in store some lovely opportunities. Our membership gathered on a Zoom meeting in late July for our first ever virtual business meeting. It was so delightful to see the faces of so many of our members, eager to maintain connection. Our board has good ideas for the upcoming months to further nurture those connections with regular interactive AMTE-TX Zoom meetings. Watch your email and AMTE-TX social media for details.
Some fantastic fresh leadership to AMTE-TX were installed at the annual business meeting. I am happy to hand over the role of president to Sarah Pratt. Sarah’s goals for AMTE-TX include increasing the engagement of our organization with the diversity of careers held by mathematics teacher educators in Texas – those who work at regional service centers, two-year colleges, four-year universities (at both Math Departments and Education Departments), consultants, and school districts. Our new leadership also includes Treasurer Priya Prasad, Vice President for Advocacy Carrie Cutler, Social Media Specialist Jamaal Young, and Photographer/Historian Kathy Horak-Smith. As they join the leadership crew, we also extend huge gratitude for the folks who served in those roles the past three (or more) years; respectively, Rebecca Dibbs, Paul Gray, Yolanda Parker, and John Lamb.

As we are all dealing with the uncertainty of education in the next months, take advantage of the resources offered by our parent organization. In the professional development portion of the AMTE website, the AMTE Rapid Response team has a page called Online Teaching Strategies for MTEs. It is filled with implementable ideas including a nice compilation of “two-minute strategies.” As well, there are multiple AMTE webinars available for viewing, including “Learning to Teach Mathematics in the Midst of a Pandemic: Voices of Stakeholders.”

I am greatly honored to have served AMTE-TX for these last two years. As I transition to past-president, I feel the responsibility of following in the shoes of the prior AMTE-TX presidents, who all are active at the national level in AMTE leadership. They are indicative of the strength of our organization – AMTE-TX is healthy because we have so many members who see the value in MTEs collaborating and serving each other and the community.

While our calendars will all be written in pencil for the next year, make certain you have added our 2021 Fall Conference at UT-San Antonio followed by the 2022 conference at Texas A&M – Corpus Christi. I can’t wait to see you there. Meanwhile, do your best to stay healthy. Take care, AMTE-TX.

Past-President Theresa Jorgensen

A Message from the Co-Editors

Greetings, Texas Mathematics Teacher Educators!

We hope that you have had a safe summer break and have had time to recharge – whether that means spending time with your family, teaching a course you particularly enjoy, immersing yourself in a research project, enjoying a hobby, or just getting some much-needed rest.

For one of us (Cody), summer offered an opportunity to work with some wonderful teachers from across Texas to develop a professional learning resource based on our shared experience with a summer mathematics program for children. While we were disappointed to have to cancel our usual summer program due to the pandemic, we embraced the opportunity to slow down a bit
and reflect on what makes teaching in the program enjoyable and rewarding: activities that spark students’ curiosity and provide windows into children’s mathematical thinking, a classroom culture that embraces children’s strengths and offers room to make mistakes, and a focus on keeping the experience fun and enriching for students.

I share this story because in our conversations with mathematics teacher educators over the last few months, we’ve noticed many of us reaching for the same things in our efforts to make online courses meaningful: opportunities for active learning, affirmation of learners’ strengths and progress, and ways to keep the experience fun and lively in an environment that seems to engender feelings of disconnection. We are fortunate to be able to share messages from Eileen Faulkenberry (Tarleton State University) and James Álvarez (University of Texas at Arlington) about how they have adapted to teaching in the pandemic era. We hope you will find their messages inspiring and consider how you can foster collaboration and effective practice in your own department.

While we work together to set ourselves up for success in teaching this fall, we also celebrate the scholarly accomplishments of members of our community who presented at the 2020 AMTE Conference in Phoenix, Arizona in February. We have invited conference presenters from AMTE-TX to provide summaries of their presentations, and we’re pleased to be able to share a few with you in this issue:

- “Community Math Project: Partnering universities, prospective teachers, and community centers to facilitate mathematics tutoring for parents,” by Emily P. Bonner, Denisse M. Hinojosa, and Crystal Kalinec-Craig of the University of Texas at San Antonio
- “Mathematical modeling in teacher education: A case study of preservice teachers’ experiences,” by Young Rae Kim and Mi Sun Park of Texas A&M University – San Antonio
- “A measurement lesson leveraging quantitative reasoning for prospective teachers,” by Hwa Young Lee of Texas State University

We’d love to hear what you have been doing in your own research and practice as mathematics teacher educators. Even though our current situation is fraught with uncertainty and frustration, we believe there are still valuable things that we can learn from one another, and important opportunities to join together and affirm our shared values as mathematics teacher educators. If you have something to share with our community, whether an innovation in a course or program for mathematics teachers, progress from an ongoing research project, or a suggestion about how we can support AMTE’s commitment to equity and effective practice, please consider submitting a four-page manuscript for an upcoming issue of JMTET! Submission instructions can be found at our journal’s homepage, https://amte-tx.com/online-journal-2/.

Best wishes,
Cody Patterson and Yasemin Gunpinar
Co-Editors, Journal of Mathematics Teacher Education in Texas
TEA at Tarleton: Collaboration and connection in the online workplace
Eileen Faulkenberry, Tarleton State University

In an effort to create an intentional space for collaboration, to improve our instructional practice, and to focus on student engagement in our classes, I invited colleagues to a weekly TEA. Teaching through Engaging Activities (TEA) meets each Friday afternoon and has been a strong part of our department’s professional development offerings for a couple of years now. TEA provides an opportunity to learn about research-based instructional practices, converse with colleagues about appropriate application, and collaboratively plan for successful implementation. It also encourages reflection in our practice as we share our successes, “progress” moments, and challenges. As a side note, we also have tea and cookies to enjoy along with our conversations.

TEA has become an integral part of our week in the department. I look forward to the informal conversations as well as the structured discussions, and have found this time to be very beneficial to my growth as a professor. I have been introduced to many new instructional practices to engage my students in their learning practice and been supported by my colleagues as I implement these practices in my courses.

While I have always enjoyed TEA, I found it to be an absolute lifeline during the COVID-19 pandemic. As we struggled to quickly move to remote learning, with many of us teaching online for the first time, it crossed my mind to strike TEA off the already overburdened schedule. However, I craved the connection with my colleagues – the opportunity to encourage and be encouraged. So, I sent out the Zoom link for our normally scheduled TEA time. I was overwhelmed by the response. We had faculty join us virtually who had never joined in person. We had an opportunity to share the technology, software, hardware, and apps we had found to help us move to an online environment. The chat portion of our Zoom room was filled with suggestions. The encouragement for each other as we shared what was working and what needed improvement was quite helpful. I think we all left the first virtual TEA feeling a lighter burden than we had when we joined. We continued to meet virtually throughout the semester, sharing, encouraging, and growing in our practice – feeding our souls so we could be better for our students.

The Importance of Adaptability and Care in Mathematics Teacher Education
James Álvarez, The University of Texas at Arlington

The move to online learning in March 2020 in response to the COVID-19 pandemic posed a new set of challenges for me and my students. I was teaching two organized graduate courses for our Master of Arts in Mathematics program for inservice secondary mathematics teachers. Our courses typically meet in three-hour blocks once a week and rely heavily on active engagement in the classroom with a minimal emphasis on lecturing.

The primary “success” of my response must be the fact that, despite the challenges, my students engaged in meaningful mathematics, participated in productive online and offline discussions, and produced quality final projects. This came from my practicing adaptability: shortening synchronous meetings, recording meetings for those who could not participate, using breakout group features during online meetings, providing structure so that students had micro-presentations to do via screen sharing, using the chat to attend to questions in real time, and keeping a keen focus on the goals of each course.
When I teach, I like to see my students’ faces, base my teacher moves upon their reactions and the feel of the classroom, and allow time for informal tinkering with the mathematics while working in an inquiry-oriented setting. The internet connectivity issues many times required that students turn off their video feed and mute their sound, which made me feel as if I were teaching into a vacuum! However, when I considered the perspectives of the human beings in my course, I found that listening to my students’ needs and considering their home environment was more important than ever.

After a couple of synchronous meetings online, one of my students asked if I could shorten these meetings because he had small children at home and found it challenging to stay engaged while caregiving. He articulated this to me, but there were several others in this situation. I adapted by requiring each student or groups of students to create 10-15 minute presentations. They then uploaded the videos to Canvas Studio, and each student was responsible for posting at least two questions or constructive comments on their classmates’ videos; the creator(s) of the video was then responsible for responding to the questions and commentary. These videos could be watched at students’ convenience during a given timeframe and still engaged students in understanding each other’s mathematical thinking. I reviewed all the comments to focus discussion and mathematical prompts for our synchronous meetings. This adjustment showed my students that I cared about their personal situations as well as maintaining the integrity of the course.

Upcoming Conferences

All scheduled conferences are subject to possible rescheduling, format change, or cancellation as our colleagues work to keep our communities safe. We will provide updates in future issues as we learn of new developments.

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Conference</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 5–7, 2020</td>
<td>SSMA Annual Convention</td>
<td>Virtual</td>
</tr>
<tr>
<td>November 12–15, 2020</td>
<td>AMATYC Annual Conference</td>
<td>Virtual</td>
</tr>
<tr>
<td>January 6–9, 2021</td>
<td>Joint Mathematics Meetings</td>
<td>Virtual</td>
</tr>
<tr>
<td>February 17-19, 2021</td>
<td>NCTM Regional Conference</td>
<td>Baltimore</td>
</tr>
<tr>
<td>February 11–13, 2021</td>
<td>AMTE Conference</td>
<td>Orlando</td>
</tr>
<tr>
<td>February 25–27, 2021</td>
<td>RCML Conference</td>
<td>Denton</td>
</tr>
<tr>
<td>March 25-27, 2021</td>
<td>NCTM Regional Conference</td>
<td>Dallas</td>
</tr>
<tr>
<td>April 19–21, 2021</td>
<td>NCTM Research Conference</td>
<td>St. Louis</td>
</tr>
<tr>
<td>April 21–24, 2021</td>
<td>NCTM Annual Meeting</td>
<td>St. Louis</td>
</tr>
<tr>
<td>June 2–6, 2021</td>
<td>PMENA Conference</td>
<td>Mazatlán</td>
</tr>
<tr>
<td>June 28–30, 2021</td>
<td>TODOS Conference</td>
<td>Scottsdale</td>
</tr>
<tr>
<td>July 19-21, 2021</td>
<td>CAMT</td>
<td>Houston</td>
</tr>
</tbody>
</table>
The Community Math Project (CMP) is a collaborative endeavor involving university, community college, and community center partners to improve mathematics education in San Antonio. While there are many aspects to the project as a whole, this paper will report on the parent tutoring program (PTP) that is housed at the University of Texas at San Antonio (UTSA). We will introduce and contextualize this program, briefly describe why we are engaging in this work, and discuss initial themes that have emerged.

Parent and family engagement in mathematics learning is an essential practice that facilitates deep mathematical learning (Aguirre, Mayfield-Ingram, & Martin, 2013; Association of Mathematics Teacher Educators, 2017), yet very few programs emphasize parental engagement in mathematics education (Harwin, 2010). Many families feel disconnected from schools and mathematics education (Civil & Berneir, 2006; Mistretta, 2013), a feeling that is often enhanced in schools where teachers and families do not share cultural and linguistic backgrounds. As such, as mathematics teacher educators we believe that it is essential that prospective teachers (PTs) have multiple opportunities to elicit and incorporate home and community knowledge into their practice (Bartell et al., 2017; Turner et al., 2016). Moreover, it is our responsibility to prepare teachers to build productive relationships with parents and communities regarding mathematics education (AMTE, 2017), as when parents participate in mathematics education, student achievement can increase, particularly in Latin@ communities (Harwin, 2010; Lee & Bowen, 2006). The CMP aims to address these areas by pairing PTs who are preparing to teach at the elementary level with parents of young children in traditionally underserved communities.

Parents are recruited from community centers and sessions are typically held at that location; however, during the COVID-19 pandemic, we have moved operations to an online format using various platforms. After a hybrid training program for PTs, PTs and parents meet once per week for eight weeks for a one-on-one tutoring session. PTs are charged with designing tasks that build on parents’ prior knowledge (from pre-assessments), and based on what parents expressed they would like to learn to support their children at home. For example, a PT may introduce the concept of fractions by discussing recipes and cooking, sharing a cake, pizza, or pancakes - things parents may already be engaging in with their young children. Further, parents are encouraged to use manipulatives and other items they might have at home (toy cars, beans, marbles) to practice and introduce these topics to children. Ultimately, our goal is to identify one parent who is interested in carrying on the program and providing tutoring at their community center after our project is over. This makes the program sustainable, and provides maximum impact to the community.

Preliminary findings based on analysis of pre- and post-tests, observations, interviews, focus groups, artifacts, and recordings of sessions indicate that sense-making moves support parents in developing understandings of mathematics. These sense-making moves include bridging disconnects between ways of doing mathematics in other countries (where parents may have grown up) and the U.S., building on prior knowledge, and thinking out loud. As such, this type of program can enhance teachers’ abilities to connect mathematics to cultural funds of knowledge (Moll et al., 1992). Over time, parents talked through solutions, often using manipulatives and other materials, to

1 *This work is supported by U.S. Department of Education Title V funds (Award # P031S180160, Northwest Vista Community College, lead institution).
reason through contextual problems. Simultaneously, PTs asked more effective questions to scaffold learning to promote parents’ abilities to make sense of math, and increased their own understandings of the content, which is essential for mathematics teachers.

This work has implications for both mathematics teacher educators and school leadership teams. Most notably, both PTs and parents benefit when this type of program is implemented. PTs gain pedagogical content knowledge related to teaching mathematics at the elementary school level, especially in the areas of questioning, scaffolding, multimodal/online learning, and contextualizing based on an individual’s experiences. Parents gain content knowledge and experience the sense-making progression that their own children will or are experiencing in the formal classroom setting, and can structure sessions similar to those they are experiencing as learners to enhance their child’s understandings. They also gain knowledge about the platforms and apps that the school uses, as these are used in the program as well. Further, parents are empowered to help their children with mathematics, and incorporate mathematics into activities they are already doing at home. Tutors provide explicit instruction on how parents can do this with their children. This may help to bridge cultural gaps that exist at school for students, and allows access to mathematics for traditionally underserved populations.

References

The need for modeling activities in mathematics education has been well documented by the Common Core State Standards for Mathematics (National Governor’s Association and the Council of Chief State School Officers [NGA-CCSSO], 2010) and the Guidelines for Assessment and Instruction in Mathematical Modeling Education (Garfunkel & Montgomery, 2016). More recently, the Standards for Preparing Teachers of Mathematics (Association of Mathematics Teacher Educators [AMTE], 2017) called for an increase in attention to mathematical modeling in teacher preparation programs. Research considers mathematical modeling not only as knowledge that well-prepared preservice mathematics teachers should develop, but also ultimately, as an indicator for effective mathematics teacher preparation programs (e.g., AMTE, 2017; Newton & Kasten, 2013).

The purpose of this study was to investigate the experiences of preservice teachers in mathematical modeling activities. In particular, we were interested in examining the extent to which model-eliciting activities (MEAs) – a type of problem-solving activity in which teams of students generate mathematical, scientific, or engineering models to solve problems – might facilitate transfer from mathematics content knowledge to mathematics pedagogical knowledge and improve mathematics teaching.

Methods

Fifteen preservice teachers (PSTs) participated in this study. At the time of the study, the PSTs were enrolled in the second author’s middle and secondary mathematics methods course. The PSTs worked in five groups of three. A sequence of MEAs was presented to the preservice teachers as part of the course resources. This study focused on one modeling activity called the Putting Green MEA.

Putting Green Problem

Dear superintendent,

The members of the golf course would like to have a larger putting green built. We believe that having the largest putting green in the city would bring new golfers to the golf course. It would be very helpful if you could tell us how many square feet the current putting green is exactly. We know the square footage of the largest putting green in the city. Once you have determined the square footage of our current putting green we will know how much we need to expand.

Please write a brief 1-2 page letter describing how to determine the square footage of the putting green. Give us a rule or a formula which will allow us to measure the area of the irregularly shaped putting green that is given in the figure. I hope your rule and formula enable us to reduce the errors that can occur during measuring irregular shapes. We want to establish a rule or formula that can be used by anyone who would like to measure the area of irregular shapes.

Thank you for taking the time to find the area of the putting green. Also, it would be nice if you would explain how you would explain to the members how you found the area of the putting green at the next club meeting. We look forward to seeing you at the meeting and hearing how you determined the area of our putting green.

Sincerely,

Sunset Golf Course Staff

![Putting Green Model-Eliciting Activity](image)

Figure 1. The Putting Green Model-Eliciting Activity.

Figure 1 shows the problem statement of the Putting Green MEA that was created by the authors. In this MEA, PSTs were asked to determine the area of a curvilinear figure in the context of putting green, an area in a golf course. The instrument involved in this MEA was considered to be nonstandard because it involved curvilinear figures, which required more estimation and less
precision than simple decomposition of typical polygonal regions. Following the completion of the modeling activity, PSTs shared their findings through group presentations. The PSTs then discussed the extent to which they might implement similar modeling activities in their future classroom practice. The PSTs reflected on this modeling activity in a journal with the goal of understanding how the MEA might change their perspectives on mathematics as a study and on the teaching of mathematics.

Findings & Discussion

The PSTs’ solution methods were classified into three categories (see Figure 2).

1. Using the definition of areas of two-dimensional figures

(a) ![Graphical representation of using the definition of areas](image)

(b) ![Graphical representation of using the definition of areas](image)

2. Utilizing the area formulas of familiar polygons

(c) ![Graphical representation of using area formulas](image)

(d) ![Graphical representation of using area formulas](image)

3. Applying the interpretation of the Riemann integral

(e) ![Graphical representation of Riemann integral](image)

\[
y = -\frac{1}{2}(x + 1)^2 + 3
\]
\[
y = \frac{1}{4}x^2 - 10
\]

Boundaries with respect to \(dx\)
-6.2
5.7

\[
\int_{-6.2}^{5.7} \left(\frac{1}{4}x^2 - 10\right) - \left(-\frac{1}{2}(x + 1)^2 + 3\right) \, dx = 103.06
\]
\[
\Rightarrow 1,030.6 \text{ sq ft.}
\]

Figure 2. Three categories of the preservice teachers’ solution methods.
In the first category, the first two groups of PSTs used the definition of areas of two-dimensional figures. They estimated the area of the curvilinear figure by counting the possible unit squares to cover the figure without any overlap. In the second category, the next two groups took advantage of the area formulas of familiar polygons. They divided the curvilinear figure into smaller figures such as triangles, squares, rectangles, and parallelograms. To this extent, the PSTs in the second category were more successful than those in the first category in minimizing the margin of errors of the area of the curvilinear figure. In the third category, the last group applied the interpretation of the Riemann integral. They utilized the fundamental theorem of calculus to obtain the area of the curvilinear figure by finding two possible quadratic functions that fit the putting green.

The preservice teachers’ journal reflections and classroom discussions generally suggested a transfer of knowledge. In particular, they reached the agreement that methods discussed in solving such problems were generalizable for other curvilinear figures in different contexts. They also indicated positive experiences in using modeling activities as teaching methods and assessments. For example, one preservice teacher made the following comment: “It definitely changed the way I might teach. This MEA would be perfect to understand how the students will think and at what level they’re at. I would like to incorporate MEAs as such to get students to think outside the box.” The PSTs’ classroom discourse also revealed their inclination to apply their experiences in MEA in their future classroom teaching in a connected range of teaching basic geometry (e.g., finding the area of complex figures) to teaching calculus (e.g., interpretations of the Riemann integral).

Conclusions

One way to appreciate the benefits of modeling activities as teaching methods is for teachers to have positive experiences of their own with modeling activities (Türker, Sağlam, & Umay, 2010). Through engaging in research-based mathematical modeling activities as suggested by the findings in this study, preservice teachers can improve not only their own mathematical understanding and habits of mind but also their knowledge about mathematical modeling as a teaching method (AMTE, 2017; Stohlmann, Maiorca, & Olson, 2015; Türker et al., 2010).

References

Learning measurement is critical for elementary students and their teachers (Smith & Barrett, 2017; Association of Mathematics Teacher Educators, 2017). However, often quantities (e.g., length, area, volume) are presented as separate topics and less attention has been given to teachers’ knowledge and instructional practices related to measurement at large (Smith & Barrett, 2017). I designed a lesson for a geometry content course for elementary and middle grades prospective teachers (PSTs) to engage PSTs in discussions on measurement in general, before focusing on specific quantities.

The lesson drew from the quantitative reasoning framework (Thompson, 2011), in which a quantity is a measurable attribute of an object an individual constructs and a measurement is conceived of as the numerical size or amount of the quantity, as a result of a process of measuring. Relatedly, the lesson had two objectives for PSTs—attend to measurable attributes and consider processes through which one might determine the size of measurable attributes.

The lesson consisted of a 40-minute group activity and a discussion about the activity in the subsequent class. PSTs, in groups of 3-4, received a packet of measuring tools (paper clips of different sizes, yarn, pattern blocks, and centimeter cubes), a worksheet, and two objects to measure—a container and sheet of paper. The worksheet asked PSTs to (1) identify three measurable attributes for each object, and for each attribute identified, (2) choose one measuring tool to measure the attribute, (3) identify the attribute of the tool they will use, (4) find and record the measurement, and (5) write questions, interesting observations, and/or thoughts on how their future students might engage in a measurement activity like this. During PSTs’ group work I monitored their activity, asked probing questions, took pictures and notes on interesting strategies, some of which were used to facilitate class discussion in the subsequent class to highlight fundamental ideas of measurement.

Here I present two ideas that were highlighted through the activity and discussion—the notion of a unit and the actions involved with the unit. First, the unconventional measuring tools encouraged PSTs to select and engage with a unit as opposed to reading off a number from a pre-demarcated measuring tool. A group commented, “I think this [activity] can teach kids they don’t always need a ruler to measure stuff. They can be able to use what they have around them.” Another comment, “When using unusual objects to measure, to describe the measurements, it wouldn’t always be in in, cm, etc. but describing the number/amount of whatever unconventional object that you are using,” led to a discussion on the notion of a unit and that any amount of measurable attribute could serve as a unit.

Second, PSTs discussed how they used their unit to measure an attribute. For example, I used a group’s comment, “The perimeter of the sheet of paper was challenging because we didn’t have that many squares to measure with...” This comment, along with that group sharing how they resolved the challenge, led to a discussion on iterating versus tiling of a unit (Dietiker, Gonulates, & Smith, 2011). A picture of two different ways a group measured volume of their container, one involving filling with assorted blocks and the other with identical blocks (see Figure 1), led to a discussion about using a consistent unit for measurement.
In summary, the lesson leveraged PSTs’ mathematical activity to foster productive whole-class discussion of fundamental principles about measurement across multiple quantities, which were often referred back to throughout the unit.

References

Call for Article Submissions

How are mathematics teacher educators addressing issues of equity and justice? Manuscripts may address, but are not limited to, the following topics:

- Equitable access for preservice/in service teachers
- Developing/promoting equity-oriented practices for remote teaching at the K–12 level
- Addressing issues of social justice

Submit manuscripts by **August 15, 2020**.

AMTE-TX Officers

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>From</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>Sarah Pratt, Baylor University</td>
<td>2020-2022</td>
</tr>
<tr>
<td>Past President</td>
<td>Theresa Jorgensen, University of Texas at Arlington</td>
<td>2020-2021</td>
</tr>
<tr>
<td>Secretary</td>
<td>Gwen Johnson, University of North Texas</td>
<td>2018-2021</td>
</tr>
<tr>
<td>Treasurer</td>
<td>Priya Prasad, University of Texas at San Antonio</td>
<td>2020-2023</td>
</tr>
<tr>
<td>VP for Advocacy</td>
<td>Carrie Cutler, University of Houston</td>
<td>2020-2023</td>
</tr>
<tr>
<td>VP for Publications</td>
<td>Jennifer Chauvot, University of Houston</td>
<td>2018-2021</td>
</tr>
<tr>
<td>VP for Conferences</td>
<td>Dittika Gupta, Midwestern State University</td>
<td>2019-2022</td>
</tr>
<tr>
<td>Membership Coordinator</td>
<td>Ryann Shelton, Baylor University</td>
<td>2019-2022</td>
</tr>
<tr>
<td>Affiliate Representative</td>
<td>Debra Plowman, Texas A&M – Corpus Christi</td>
<td>2019-2022</td>
</tr>
<tr>
<td>Social Media Specialist</td>
<td>Jamaal Young, Texas A&M University</td>
<td>2020-2023</td>
</tr>
<tr>
<td>Photographer</td>
<td>Kathy Horak-Smith, Tarleton State University</td>
<td>2020-2023</td>
</tr>
<tr>
<td>Webmaster</td>
<td>Michael Warren, Tarleton State University</td>
<td>2019-2022</td>
</tr>
<tr>
<td>JMTET Co-Editors</td>
<td>Cody L. Patterson, Texas State University</td>
<td>2019-2022</td>
</tr>
<tr>
<td>JMTET Copy Editor</td>
<td>Matt Switzer, Texas Christian University</td>
<td></td>
</tr>
</tbody>
</table>

MEMBERSHIP

The AMTE-TX official membership cycle is from July 1 through June 30. Typically, members join or renew memberships at CAMT or at the AMTE-TX Fall Conference. Encourage your colleagues to join!

You can easily join or renew your membership at https://amte-tx.com/join-or-renew/

For any membership questions, please contact our Membership Coordinator, Ryann Shelton at Ryann_Shelton@baylor.edu

Call for Submissions for JMTET

We welcome manuscripts on all topics relevant to mathematics teacher educators in Texas.

Don’t forget our special call for manuscripts! See page 12 of this issue.

Submit articles by **October 15, 2020**.

Visit the AMTE-TX website for submission guidelines.

Questions?
Interested in becoming a reviewer?
Contact the Journal Co-Editors: jmtet.amtetx@gmail.com